Today most of the modern computer systems operate using binary logic. The computer represents values using two voltage levels that indicate to either OFF or ON using 0 and 1. For example the voltage 0V is usually represented by logic 0 and either +3.3 V or +5V voltage is represented by logic 1.

Data Recovery PRO DATA DOCTOR

Home | Order Online | Downloads | Contact Us | Software Knowledgebase

it | es | pt | fr | de | jp | kr | cn | ru | nl | gr


Binary Number System

Today most of the modern computer systems operate using binary logic. The computer represents values using two voltage levels that indicate to either OFF or ON using 0 and 1. For example the voltage 0V is usually represented by logic 0 and either +3.3 V or +5V voltage is represented by logic 1. Thus with two levels we can represent exactly two different values. These could be any two different values, but by convention we use the values 0 and 1.

Since there is a correspondence between the logic levels used by the computer and the two digits used in the binary numbering system, it should come as no surprise that computers employ the binary system.

The binary number system works like the decimal number system except the Binary Number System uses the base 2 and includes only the digits 0 and 1 and use of any other digit would make the number an invalid binary number.

The weighted values for each position are represented as follows:

(Base)power

27

26

25

24

23

22

21

20

2-1

2-2

Value

128

64

32

16

8

4

2

1

.5

.25


The following table shows the representation of binary number against the decimal numbers:

Decimal Number

Binary Number Representation

0

0000

1

0001

2

0010

3

0011

4

0100

5

0101

6

0110

7

0111

8

1000

9

1001

10

1010

11

1011

12

1100

13

1101

14

1110

15

1111

Usually in case of decimal numbers, every three decimal digits are separated with a comma to make larger numbers easier to read. For example, it is much easier to read a number 840,349,823 than 840349823.

Getting the inspiration from the same idea, there is a similar convention for binary numbers so that it may be easier to read binary numbers but in case of binary numbers we will add a space every four digits starting from the least significant digit on the left of the decimal point.

For example if the binary value is 1010011001101011, it will be written as 1010 0110 0110 1011.

Sample Chapters from book DATA RECOVERY WITH AND WITHOUT PROGRAMMING by Author Tarun Tyagi
Data Recovery with & without Programming


Publishers of the Book
Number of Pages
ISBN
Price of the Book


BPB Publications, New Delhi, India
540
81-7656-922-4
$69.00 (Including Shipping Charges, Cost of Book and Other expenses, Free Source Code CD included with the Book)





Buy Data recovery Book

Previous page

page 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20

 
 

page 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28

Next page

© Copyright 2002-2005 DataDoctor.Biz

Home | Contact us | Downloads | Services | Terms and conditions | Site map

Website Data Recovery | recuperación de Datos | Récupération de données | Datenrettung | Recupero dati | データ復旧 | 데이터 복구 | 数据恢复 | Восстановление данных | De terugwinning van gegevens | Ανάκτηση δεδομένων
Sitemap Site map1 2 3 4 | Spanish1 2 3 | French1 2 3 | German1 2 3 | Italian1 2 3 | Portuguese1 2 3 | Japanese1 2 3 | Korean1 2 3 | Chinese1 2 3 | Russian1 2 3 | Dutch1 2 3 | Greek1 2 3
Data Recovery Book English | Spanish | French | German | Italian | Portuguese | Japanese | Korean | Chinese | Russian | Dutch | Greek